Toxin-Antitoxin Systems Are Important for Niche-Specific Colonization and Stress Resistance of Uropathogenic Escherichia coli
نویسندگان
چکیده
Toxin-antitoxin (TA) systems are prevalent in many bacterial genomes and have been implicated in biofilm and persister cell formation, but the contribution of individual chromosomally encoded TA systems during bacterial pathogenesis is not well understood. Of the known TA systems encoded by Escherichia coli, only a subset is associated with strains of extraintestinal pathogenic E. coli (ExPEC). These pathogens colonize diverse niches and are a major cause of sepsis, meningitis, and urinary tract infections. Using a murine infection model, we show that two TA systems (YefM-YoeB and YbaJ-Hha) independently promote colonization of the bladder by the reference uropathogenic ExPEC isolate CFT073, while a third TA system comprised of the toxin PasT and the antitoxin PasI is critical to ExPEC survival within the kidneys. The PasTI TA system also enhances ExPEC persister cell formation in the presence of antibiotics and markedly increases pathogen resistance to nutrient limitation as well as oxidative and nitrosative stresses. On its own, low-level expression of PasT protects ExPEC from these stresses, whereas overexpression of PasT is toxic and causes bacterial stasis. PasT-induced stasis can be rescued by overexpression of PasI, indicating that PasTI is a bona fide TA system. By mutagenesis, we find that the stress resistance and toxic effects of PasT can be uncoupled and mapped to distinct domains. Toxicity was specifically linked to sequences within the N-terminus of PasT, a region that also promotes the development of persister cells. These results indicate discrete, multipurpose functions for a TA-associated toxin and demonstrate that individual TA systems can provide bacteria with pronounced fitness advantages dependent on toxin expression levels and the specific environmental niche occupied.
منابع مشابه
Cyclic AMP Regulates Bacterial Persistence through Repression of the Oxidative Stress Response and SOS-Dependent DNA Repair in Uropathogenic Escherichia coli
Bacterial persistence is a transient, nonheritable physiological state that provides tolerance to bactericidal antibiotics. The stringent response, toxin-antitoxin modules, and stochastic processes, among other mechanisms, play roles in this phenomenon. How persistence is regulated is relatively ill defined. Here we show that cyclic AMP, a global regulator of carbon catabolism and other core pr...
متن کاملEvaluation of Toxin and Antitoxin System in Acinetobacter Multidrug Resistance Bacteria Isolated From Clinical Specimens
Introduction: Acinetobacter baumannii is one of the most important nosocomial and community-acquired pathogens that is resistant to many antibiotics. Toxin-antitoxin systems are regulatory systems that maintain bacteria and serve as new targets for Antimicrobial therapies are considered. The prevalence and transcription of these systems in clinical isolates is still unknown. The aim of this stu...
متن کاملInvestigation of Biofilm ability by Microtiter Plate Method in uropathogenic Escherichia coli isolated from patients with urinary tract infection with urinary stones.
Abstract: Background and Aim: Urinary tract infections are one of the most commonly reported nosocomial infections caused by colonization of E. coli in the mucosal epithelium and in the formation of microbial biofilms, which damage the host tissue. The aim of this study was to determine the amount of biofilm formation of uropathogenic E. coli based on urinary tract stones of people with urin...
متن کاملEvaluation of the antibiotic resistance and prevalence of uropathogenic Escherichia coli and detection of traT gene in isolated from patients referred to Abadan hospitals during 2017-2018
Objective: Escherichia coli is one of the most important causes agents of urinary tract infection in human. Thus, identification of Escherichia coli resistance patterns seems to be necessary. traT gene has been reported variable in Escherichia coli strains isolated from urinary tract infection. Therefore, the aim of this study was to investigate the prevalence of uropathogenic Escherichia coli ...
متن کاملAntibiotic Resistance Pattern and Phylogenetic Groups of the Uropathogenic Escherichia coli Isolates Recovered from the Urinary Catheters of the Hospitalized Patients
Introduction: Almost 80% of nosocomial urinary tract infections (UTIs) are due to catheterization. Catheter-associated UTI (CAUTI) is the primary source for colonization of antibiotic-resistant pathogens, and uropathogenic Escherichia coli (UPEC) is the most common causative bacteria. This study was conducted to determine the phylogenetic groups, and antibiotic resistance pattern as the two imp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2012